Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Orphanet J Rare Dis ; 19(1): 159, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610036

ABSTRACT

BACKGROUND: Clinicians traditionally aim to identify a singular explanation for the clinical presentation of a patient; however, in some cases, the diagnosis may remain elusive or fail to comprehensively explain the clinical findings. In recent years, advancements in next-generation sequencing, including whole-exome sequencing, have led to the incidental identification of dual diagnoses in patients. Herein we present the cases of five pediatric patients diagnosed with dual rare genetic diseases. Their natural history and diagnostic process were explored, and lessons learned from utilizing next-generation diagnostic technologies have been reported. RESULTS: Five pediatric cases (3 boys, 2 girls) with dual diagnoses were reported. The age at diagnosis was from 3 months to 10 years. The main clinical presentations were psychomotor retardation and increased muscular tension, some accompanied with liver dysfunction, abnormal appearance, precocious puberty, dorsiflexion restriction and varus of both feet, etc. After whole-exome sequencing, nine diseases were confirmed in these patients: Angelman syndrome and Krabbe disease in case 1, Citrin deficiency and Kabuki syndrome in case 2, Homocysteinemia type 2 and Copy number variant in case 3, Isolated methylmalonic acidemia and Niemann-Pick disease type B in case 4, Isolated methylmalonic acidemia and 21-hydroxylase deficiency in case 5. Fifteen gene mutations and 2 CNVs were identified. Four novel mutations were observed, including c.15292de1A in KMT2D, c.159_164inv and c.1427G > A in SLC25A13, and c.591 C > G in MTHFR. CONCLUSIONS: Our findings underscore the importance of clinicians being vigilant about the significance of historical and physical examination. Comprehensive clinical experience is crucial for identifying atypical clinical features, particularly in cases involving dual rare genetic diseases.


Subject(s)
Abnormalities, Multiple , Amino Acid Metabolism, Inborn Errors , Angelman Syndrome , Citrullinemia , Male , Female , Humans , Child , Mitochondrial Membrane Transport Proteins
2.
Phys Chem Chem Phys ; 26(18): 13751-13761, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683175

ABSTRACT

Understanding the dynamics of neurotransmitters is crucial for unraveling synaptic transmission mechanisms in neuroscience. In this study, we investigated the impact of terahertz (THz) waves on the aggregation of four common neurotransmitters through all-atom molecular dynamics (MD) simulations. The simulations revealed enhanced nicotine (NCT) aggregation under 11.05 and 21.44 THz, with a minimal effect at 42.55 THz. Structural analysis further indicated strengthened intermolecular interactions and weakened hydration effects under specific THz stimulation. In addition, enhanced aggregation was observed at stronger field strengths, particularly at 21.44 THz. Furthermore, similar investigations on epinephrine (EPI), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA) corroborated these findings. Notably, EPI showed increased aggregation at 19.05 THz, emphasizing the influence of vibrational modes on aggregation. However, 5-HT and GABA, with charged or hydrophilic functional groups, exhibited minimal aggregation under THz stimulation. The present study sheds some light on neurotransmitter responses to THz waves, offering implications for neuroscience and interdisciplinary applications.


Subject(s)
Molecular Dynamics Simulation , Neurotransmitter Agents , Serotonin , Terahertz Radiation , gamma-Aminobutyric Acid , Neurotransmitter Agents/chemistry , gamma-Aminobutyric Acid/chemistry , Serotonin/chemistry , Serotonin/metabolism , Nicotine/chemistry , Epinephrine/chemistry
3.
J Agric Food Chem ; 72(14): 8167-8179, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38509823

ABSTRACT

The existing aptamers for cadmium (Cd2+), the common toxic heavy metal contaminant in food, cannot meet the requirements for detecting Cd2+ in rapid detection methods. In previous work, we found that coupling aptamer-peptide conjugates (APCs) with peptides and aptamers can provide a less disruptive method with a significantly improved affinity. Moreover, we found that the spatial conformation of aptamers and peptides is crucial for obtaining proper affinity in APC. Therefore, we describe a simple design strategy to obtain a series of APCs with different affinities by designing peptide orientations (N-terminal, C-terminal). The best affinity was found for APC(C1-N) with a binding constant (Ka) of 2.23 × 106 M-1, indicating that the APC(C1-N) affinity was significantly increased by 829.17% over aptamer. Finally, a rolling-circle amplification (RCA)-coupled ratio fluorescence-based biosensor for Cd2+ detection was established with a detection limit of 0.0036 nM, which has great potential for practical aquatic product detection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Fluorescent Dyes/chemistry , Cadmium , Aptamers, Nucleotide/chemistry , Peptides , Biosensing Techniques/methods , Nucleic Acid Amplification Techniques/methods , Limit of Detection
4.
Chemosphere ; 342: 140149, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37709065

ABSTRACT

This work examined the transformation pathways of sludge biochar-derived dissolved organic matters (SBC-derived DOMs) under sludge pyrolysis via FT-ICR-MS-based reactomics and molecular network analysis. Lignin/carboxylic-rich alicyclic molecules, proteins/aliphatic, and lipids of SBC-derived DOMs did not contribute equally to the overall pyrolytic reactions. Reactomics suggested that the pyrolysis reactions of SBC-derived DOMs consist of multiple cascade reactions involving the elimination of assemblages of reactive fragments during each pyrolysis reaction region, and the overall pyrolysis process was divided into three stages according to cascade reaction variations. Especially, cascade reactions at 400-500 °C produced potential environmental risk substances of N-containing, carbonyl-containing, and phenolic compounds. Besides, network analysis unraveled the complexity and number of molecular reaction pairs of SBC-derived DOMs decreased with the increase in pyrolytic temperatures. Keystone molecules and pathways results indicated that the pyrolytic temperature of the sludge pyrolysis process should be controlled at temperatures above 500 °C according to the harmful substances generation pattern in reaction products. Overall, the possible transformation pathways of SBC-derived DOMs during sludge pyrolysis treatment were proposed. This study elucidated the underlying mechanisms in generating SBC-derived DOMs and provided theoretical support for process optimization and harmful substances control of sludge pyrolysis.

6.
Front Nutr ; 10: 1124387, 2023.
Article in English | MEDLINE | ID: mdl-37252234

ABSTRACT

Background: The most common disorder of the intracellular cobalamin metabolism pathway is the combined methylmalonic acidemia and homocysteinemia, cblC type (cblC). There is a variation in its clinical spectrum ranging from severe neonatal-onset forms that are highly fatal to later-onset forms which are milder. In this study, the first case of an asymptomatic Chinese woman with a defect in congenital cobalamin (cblC type) metabolism at prenatal diagnosis due to elevated homocysteine level is identified. Case presentation: The proband, a male child born to a 29-year-old G1P0 mother, admitted to local hospital with feeding disorder, intellectual disability, seizures, microcephaly, as well as heterophthalmos. The level of the urine methylmalonic was elevated. Equally found were increased blood propionylcarnitine (C3) and propionylcarnitine/free carnitine ratio (C3/C0) and decreased methionine levels. The plasma total homocysteine level was elevated at 101.04 µmol/L (normal < 15 µmol/L). The clinical diagnosis of combined methylmalonic acidemia and homocysteinemia was supported. Four years later, the mother of the boy married again and came to us for prenatal diagnosis exactly 15 weeks after her last menstrual period. Subsequently, there is an increase in the amniotic fluid methylmalonate. The level of the amniotic fluid total homocysteine was marginally high. A considerably elevated amniotic fluid C3 was equally observed. In addition, there is a respective significant increase in the plasma and urine total homocysteine at 31.96 and 39.35 µmol/L. After the sequencing of MMACHC genes, it is found that the boy, a proband carried a homozygous mutation of the MMACHC at c.658_660delAAG. While the boy's mother, she carries two mutations in MMACHC: c.658_660delAAG and c.617G>A. The fetus is a carrier of the MMACHC gene. Following the administration of routine treatment, the mother remained symptom-free in the course of pregnancy, and she gave birth to a healthy boy. Conclusion: Variable and nonspecific symptoms characterized the cblC type of methylmalonic acidemia combined with homocysteinemia. Both biochemical assays and mutation analysis are recommended as crucial complementary techniques.

7.
Anal Bioanal Chem ; 415(17): 3463-3474, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37199793

ABSTRACT

Lead contamination is a major concern in food safety and, as such, many lead detection methods have been developed, especially aptamer-based biosensors. However, the sensitivity and environmental tolerance of these sensors require improvement. A combination of different types of recognition elements is an effective way to improve the detection sensitivity and environmental tolerance of biosensors. Here, we provide a novel recognition element, an aptamer-peptide conjugate (APC), to achieve enhanced affinity of Pb2+. The APC was synthesized from Pb2+ aptamers and peptides through clicking chemistry. The binding performance and environmental tolerance of APC with Pb2+ was studied through isothermal titration calorimetry (ITC); the binding constant (Ka) was 1.76*106 M-1, indicating that the APC's affinity was increased by 62.96% and 802.56% compared with the aptamers and peptides, respectively. Besides, APC demonstrated better anti-interference (K+) than aptamer and peptide. Through the molecular dynamics (MD) simulation, we found that more binding sites and stronger binding energy between APC with Pb2+are the reasons for higher affinity between APC with Pb2+. Finally, a carboxyfluorescein (FAM)-labeled APC fluorescent probe was synthesized and a fluorescent detection method for Pb2+ was established. The limit of detection of the FAM-APC probe was calculated to be 12.45 nM. This detection method was also applied to the swimming crab and showed great potential in real food matrix detection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Lead , Aptamers, Nucleotide/chemistry , Limit of Detection , Fluorescent Dyes/chemistry , Biosensing Techniques/methods
8.
Curr Pharm Biotechnol ; 24(13): 1708-1714, 2023.
Article in English | MEDLINE | ID: mdl-36959153

ABSTRACT

BACKGROUND: Hypertensive nephropathy (HN) is one kind of kidney disorders caused by long-term uncontrolled hypertension, usually resulting in severe kidney damage, including inflammation and oxidative stress, no matter in cells or tissues, from patients with nephropathy. In recent years, nephropathy accompanied by hypertension is becoming one of the main causes for kidney replacement therapy, but few effective treatments have been reported for HN treatment. Asystasia chelonoides (AC) is a kind of plant with the effects of anti-inflammation, lowering blood pressure, and anti-oxidative stress. Still, the therapeutic effect of AC in HN rats is not clear. METHODS: To establish HN model by feeding high sugar and high fat diet spontaneously hypertensive rats. Blood measurement, HE staining, PAS staining and biochemical analysis and were used to assess the therapeutic effects of AC extracts and western blotting analyzed the underlying mechanisms of AC extracts treatment in the HN rat model. RESULTS: AC extracts could significantly lower systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean blood pressure (MBP) in HN rats; and reduce the expression of total protein (TP), blood urea nitrogen (BUN), microalbuminuria (MALB), creatinine (Cr), total cholesterol (TC), triglyceride (TG), and low-density lipoprotein-cholesterol (LDL-C) concentrations, and also could down-regulate expression of IL-6, MDA and AGEs, up-regulate the expression of SOD in HN rats; HE staining and PAS staining demonstrated that AC extracts could alleviate the histopathological changes in HN rats; western blotting demonstrated that AC extracts could up-regulate the expression of PPARγ and down-regulate the expression of TGFß1 and NF-кB in HN rats. CONCLUSION: The finding of the article demonstrated that AC extracts had the better therapeutic effect for HN, and provided the pharmacological evidences for AC extracts treatment for HN.


Subject(s)
Hypertension, Renal , Hypertension , Rats , Animals , Hypertension, Renal/complications , Hypertension, Renal/pathology , Hypertension/drug therapy , Rats, Inbred SHR , Cholesterol , Kidney , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
9.
Mol Cell ; 83(2): 298-313.e8, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36603579

ABSTRACT

Post-translational modifications (PTMs) of proteins are crucial to guarantee the proper biological functions in immune responses. Although protein phosphorylation has been extensively studied, our current knowledge of protein pyrophosphorylation, which occurs based on phosphorylation, is very limited. Protein pyrophosphorylation is originally considered to be a non-enzymatic process, and its function in immune signaling is unknown. Here, we identify a metabolic enzyme, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), as a pyrophosphorylase for protein serine pyrophosphorylation, by catalyzing the pyrophosphorylation of interferon regulatory factor 3 (IRF3) at serine (Ser) 386 to promote robust type I interferon (IFN) responses. Uap1 deficiency significantly impairs the activation of both DNA- and RNA-viruse-induced type I IFN pathways, and the Uap1-deficient mice are highly susceptible to lethal viral infection. Our findings demonstrate the function of protein pyrophosphorylation in the regulation of antiviral responses and provide insights into the crosstalk between metabolism and innate immunity.


Subject(s)
Interferon Regulatory Factor-3 , Interferon Type I , Animals , Mice , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Phosphorylation , Signal Transduction , Galactosyltransferases/metabolism
10.
Perfusion ; 38(1): 214-219, 2023 01.
Article in English | MEDLINE | ID: mdl-34617832

ABSTRACT

Aluminium phosphide (ALP) and aluminium zinc phosphide (ZnP), the two main ingredients of fumigation drugs, are commonly used to kill insects or rodents in grain. When exposed to water, highly toxic phosphine gas is released and absorbed through the respiratory or digestive tract. Phosphine gas could non-selectively block cytochrome oxidase, inhibit electron transfer and suppress oxidative phosphorylation, leading to cellular hypoxia and organ dysfunction. The characteristic clinical manifestations are refractory shock and metabolic acidosis with high mortality. However, patients with ALP poisoning have a chance to be cured. Here, we report a case of oral ALP poisoning that was successfully treated by extracorporeal membrane oxygenation (ECMO) combined with continuous renal replacement therapy (CRRT) during frequent ventricular fibrillation and cardiac dysfunction.


Subject(s)
Aluminum , Cardiopulmonary Resuscitation , Humans , Arrhythmias, Cardiac
11.
Orphanet J Rare Dis ; 17(1): 330, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056359

ABSTRACT

BACKGROUND: cblC deficiency is the most common type of methylmalonic aciduria in China. Late-onset patients present with various non-specific symptoms and are usually misdiagnosed. The purpose of this study is to investigate the clinical features of patients with late-onset cblC deficiency and explore diagnosis and management strategies around puberty. RESULTS: This study included 56 patients (35 males and 21 females) with late-onset cblC deficiency who were admitted to our clinic between 2002 and September 2021. The diagnosis was confirmed by metabolic and genetic tests. The clinical and biochemical features, disease triggers, outcome, and associated genetic variants were examined. The onset age ranged from 10 to 20 years (median age, 12 years). Fifteen patients (26.8%) presented with symptoms after infection or sports training. Further, 46 patients (82.1%) had neuropsychiatric diseases; 11 patients (19.6%), cardiovascular diseases; and 6 patients (10.7%), pulmonary hypertension. Renal damage was observed in 6 cases (10.7%). Genetic analysis revealed 21 variants of the MMACHC gene in the 56 patients. The top five common variants detected in 112 alleles were c.482G > A (36.6%), c.609G > A (16.1%), c.658_660delAAG (9.8%), c.80A > G (8.0%), and c.567dupT (6.3%). Thirty-nine patients carried the c.482G > A variant. Among 13 patients who exhibited spastic paraplegia as the main manifestation, 11 patients carried c.482G > A variants. Six patients who presented with psychotic disorders and spastic paraplegia had compound heterozygotic c.482G > A and other variants. All the patients showed improvement after metabolic treatment with cobalamin, L-carnitine, and betaine, and 30 school-aged patients returned to school. Two female patients got married and had healthy babies. CONCLUSIONS: Patients with late-onset cblC deficiency present with a wide variety of neuropsychiatric symptoms and other presentations, including multiple organ damage. As a result, cb1C deficiency can easily be misdiagnosed as other conditions. Metabolic and genetic studies are important for accurate diagnosis, and metabolic treatment with cobalamin, L-carnitine, and betaine appears to be beneficial.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Homocystinuria , Vitamin B 12 Deficiency , Adolescent , Adult , Amino Acid Metabolism, Inborn Errors/genetics , Betaine , Carnitine , Child , Female , Homocystinuria/diagnosis , Humans , Infant , Male , Mutation/genetics , Oxidoreductases/genetics , Paraplegia , Puberty , Retrospective Studies , Vitamin B 12 , Vitamin B 12 Deficiency/genetics , Young Adult
14.
J Agric Food Chem ; 70(34): 10662-10668, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35939804

ABSTRACT

Ochratoxin A (OTA) contamination of corn has received significant attention due to the wide distribution and high toxicity of OTA. The maximum residue limit standard of OTA in corn has been established by the Chinese Government and other unions. Nanoparticle-based fluorescence resonance energy transfer (FRET) assays are promising methods for the sensitive and fast detection of OTA. However, satisfactory detection sensitivity is commonly achieved with complicated signal amplification processes or specific nanoparticle morphologies, which means that these assays are not conducive to fast detection. This study proposes a simple and novel strategy to improve the sensitivity of FRET aptasensors. In this strategy, a DNA tetrahedron was first used in gold nanorod-based FRET aptasensors. DNA tetrahedron-modified gold nanorods are used as fluorescent acceptors, and Cy5-modified complementary sequences of the OTA aptamer are used as fluorescent donors. The aptamers of OTA are embedded in the DNA tetrahedrons, and FRET occurs when the aptamers hybridize with the Cy5-modified complementary sequences. The aptamer-integrated DNA tetrahedron modified on the surface of gold nanorods acts as an anchor, thus avoiding the crowding and entanglement of aptamers. Due to the competitive combination between the OTA aptamers and complementary sequences, the greater the amount of OTA, the less the amount of Cy5-modified complementary sequences that bind with the aptamers and the less the amount of Cy5 that is quenched. Thus, the fluorescence intensity is positively related to the OTA concentration. In this study, in the concentration range of 0.01-10 ng/mL, the fluorescence intensity was found to be linearly related to the logarithmic concentration of OTA. The limit of detection was calculated to be 0.005 ng/mL. The specificity of the developed biosensor was demonstrated to be efficient. The accuracy and stability of the developed aptasensor were also tested, and the method exhibited good performance in real samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Nanotubes , Ochratoxins , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , DNA , Fluorescence Resonance Energy Transfer/methods , Gold/chemistry , Limit of Detection , Ochratoxins/analysis
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(6): 565-570, 2022 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-35773756

ABSTRACT

OBJECTIVE: To investigate the factors affecting phenotypes in the patients of methylmalonic acidemia combined with homocysteinemia cblC type with MMACHC c.609G>A homologous variant. METHODS: A retrospective study on the clinical manifestations, complications, treatment, and outcome in 164 patients of cblC type with MMACHC c.609G>A homologous variant was conducted. The patients were diagnosed by biochemical and genetic analysis from January 1998 to December 2020. RESULTS: Among the 164 patients, 2 cases were prenatally diagnosed and began treatment after birth. They are 3 and 12 years old with normal physical and mental development. Twenty-one cases were diagnosed by newborn screening. Among them, 15 cases had with normal development. They were treated from the age of two weeks at the asymptomatic period. Six cases began treatment aged 1 to 3 months after onset. Their development was delayed. One hundred and forty-one cases were clinically diagnosed. Their onset age ranges from a few minutes after birth to 6 years old. 110 cases had early-onset (78.0%). 31 cases had late-onset (22.0%). Five of them died. 24 patients lost to follow-up. Of the 141 clinically diagnosed patients, 130 (92.2%) with psychomotor retardation, 69 (48.9%) with epilepsy, 39 (27.7%) with anemia, 30 (21.3%) had visual impairment, 27 (19.1%) had hydrocephalus, 26 (18.4%) had feeding difficulties, 7 (5.0%) with liver damage, and 5 (3.5%) with metabolic syndrome. The frequency of hydrocephalus and seizures was significantly higher in the early-onset group. The urinary methylmalonic acid increased significantly in the patients with epilepsy. During the long-term follow-up, the level of plasma total homocysteine in the seizure-uncontrolled group was significantly higher than that in the seizure-controlled group, the difference had a statistical significance (P<0.05). CONCLUSION: Most of the patients with MMACHC c.609G>A homozygous variant had early-onset disease, with a high mortality and disability rate. If not treated in time, it will lead to neurological damage, resulting in epilepsy, mental retardation, hydrocephalus, and multiple organ damage. Pre-symptomatic diagnosis and treatment are crucial to prevent irreversible neurological damage. Neonatal screening and prenatal diagnosis are important to improve the outcome of the patients.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Hydrocephalus , Oxidoreductases , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/genetics , Female , Humans , Hydrocephalus/diagnosis , Hydrocephalus/enzymology , Hydrocephalus/genetics , Mutation , Oxidoreductases/genetics , Phenotype , Pregnancy , Retrospective Studies , Seizures/genetics
16.
Exp Ther Med ; 23(5): 322, 2022 May.
Article in English | MEDLINE | ID: mdl-35386623

ABSTRACT

Inflammatory cytokines, including high mobility group box 1 (HMGB1), play a key role in sepsis via various mechanisms, some of which remain unknown. Sepsis is a common cause of death in patients admitted to the intensive care unit. MicroRNAs (miRs) serve an important role in the inflammatory response. The present study aimed to investigate the role of miR-23a-3p in macrophage inflammation and the targeted regulation of HMGB1 expression. The murine macrophage cell line RAW264.7 was subjected to lipopolysaccharide (LPS) treatment to mimic the inflammation involved in sepsis in vitro. Reverse transcription-quantitative PCR was performed to measure miR-23a-3p expression and mRNA expression. Protein levels were determined using ELISA and western blotting. The target binding relationship between miR-23a-3p and the HMGB1 3'untranslated region was predicted and validated with a dual luciferase reporter assay. HMGB1 expression was increased and miR-23a-3p expression significantly reduced in patients with sepsis and in LPS-treated RAW264.7 cells in comparison with controls. Overexpression of miR-23a-3p reduced interleukin (IL)-6 and tumor necrosis factor (TNF)-α expression in RAW264.7 cells under LPS stimulation, while silencing of miR-23a-3p elevated the expression of IL-6 and TNF-α in comparison with controls. The inhibitory effect of miR-23a-3p on LPS-induced inflammation could be abolished by HMGB1 upregulation in RAW264.7 cells. HMGB1 was targeted by miR-23a-3p. miR-23a-3p is expressed at reduced levels during inflammation in sepsis, and overexpression of miR-23a-3p inhibits LPS-induced inflammation in murine macrophages in vitro by directly downregulating HMGB1. The results of the present study provided a novel insight into the molecular mechanism underlying HMGB1 expression at the post-transcriptional level in sepsis.

17.
PLoS One ; 17(3): e0265766, 2022.
Article in English | MEDLINE | ID: mdl-35358224

ABSTRACT

BACKGROUND: Methylmalonic aciduria (MMA), a rare inherited disorder, is the most common organic aciduria in China, and prenatal diagnosis has contributed to its prevention. However, the prenatal diagnosis of MMA using cultured amniocytes or chorionic villi to detect gene mutations is exclusively applicable to families with a definite genetic diagnosis. To evaluate the reliability of mass spectrometry assays for the prenatal diagnosis of MMA, we conducted a retrospective study of our 10 years' experience. MATERIALS AND METHODS: This retrospective compare study reviewed the medical records for maternal and fetuses data for 287 mothers with a family history of MMA from June 2010 to December 2020. Methylmalonate and propionylcarnitine in cell-free amniotic fluid were measured using a stable isotope dilution method (GC/MS) and MS/MS-based method (LC/MS/MS). Total homocysteine (tHcy) was measured by fluorescence polarization immunoassay. Depending on the presence of disease-causing gene mutations in probands, gene studies on amniocytes from 222 pregnant women were performed. RESULTS: For 222 fetuses of the families with definite genetic diagnosis, gene analyses were performed using cultured amniocytes. 52 fetuses were affected by MMA, whereas 170 were "unaffected". For GC/MS and LC/MS/MS, the specificity was 96.5% and 95.9%, sensitivity was 71.2% and 84.6%, respectively. The positive and negative predictive values were 86.0% and 91.6% and 86.3% and 95.3%, respectively. Propionylcarnitine/butyrylcarnitine ratio showed the highest accuracy and could thus serve as a sensitive indicator to identify those at a risk for MMA. When GC/MS and LC/MS/MS were performed in parallel, the specificity was 92.5% and sensitivity was 95.6%. When evaluating tHcy, the positive and negative predictive values were 95.0% and 96.1%, respectively. In 65 fetuses without family genetic diagnosis, 11 were finally confirmed to have MMA and 54 were "unaffected" by amniotic fluid biochemical assays. The 54 children showed normal urine organic acids and healthy development after birth. CONCLUSIONS: Amniotic fluid biochemical assays using GC/MS and LC/MS/MS in parallel increased the accuracy of prenatal diagnosis of MMA. Propionylcarnitine is a more reliable marker than methylmalonic acid in amniotic fluid. Further, tHcy is recommended for the prenatal diagnosis of combined MMA and homocysteinemia.


Subject(s)
Amniotic Fluid , Tandem Mass Spectrometry , Amino Acid Metabolism, Inborn Errors , Amniotic Fluid/chemistry , Child , Female , Humans , Methylmalonic Acid , Pregnancy , Prenatal Diagnosis/methods , Reproducibility of Results , Retrospective Studies
18.
Article in English | MEDLINE | ID: mdl-35222679

ABSTRACT

BACKGROUND: Skin and soft tissue infections (SSTIs) are a group of common diseases, usually caused by bacteria. Shangke Huangshui (SK) has been widely used to treat various SSTIs diseases for many years, but its mechanism is unclear. Therefore, this study was designed to investigate the anti-infective effect of SK on different skin and soft tissue infection diseases and to explore its underlying mechanism. METHODS: The subcutaneous abscess mouse model, the dermal ulcer rat model, and the infectious soft tissue injury rat model were established by injection of Staphylococcus aureus to evaluate the anti-inflammatory and antibacterial effects of SK. Abscess volume, local appearance score and histological changes, bacterial contents, and hydroxyproline concentration in the skin or soft tissue were analyzed. The levels of NO, TNF-α, IL-1ß, and IL-8 in the serum and tissue were determined by ELISA method. The mRNA expression levels of TLR2, MyD88, TAK1, NF-κB, AP-1, and other genes were measured with qRT-PCR method, and the protein expression of TLR2, MyD88, TAK1, NF-κB, and AP-1 was detected by western blot method. RESULTS: SK had an obvious therapeutic effect on skin and soft tissue infections. It reduced the volume of abscess and promoted the healing of skin ulcer, improved pathological phenomena, such as inflammatory infiltration of skin and soft tissue, reduced the levels of white blood cells and NO in the blood, decreased bacteria contents in the skin and soft tissue. Furthermore, SK decreased the mRNA expression of TLR2, MyD88, TAK1, NF-κB and AP-1, and other related genes and also downregulated the protein expression of TLR2, MyD88, TAK1, NF-κB, and AP-1. CONCLUSION: The experiments provide evidence that SK can treat skin and soft tissue infection diseases based on its comprehensive antibacterial and anti-inflammatory effects. The therapeutic mechanism may be associated with the inhibition of TLR2/MyD88/NF-κB signaling pathway.

19.
Protein Cell ; 13(1): 47-64, 2022 01.
Article in English | MEDLINE | ID: mdl-34676498

ABSTRACT

As a sensor of cytosolic DNA, the role of cyclic GMP-AMP synthase (cGAS) in innate immune response is well established, yet how its functions in different biological conditions remain to be elucidated. Here, we identify cGAS as an essential regulator in inhibiting mitotic DNA double-strand break (DSB) repair and protecting short telomeres from end-to-end fusion independent of the canonical cGAS-STING pathway. cGAS associates with telomeric/subtelomeric DNA during mitosis when TRF1/TRF2/POT1 are deficient on telomeres. Depletion of cGAS leads to mitotic chromosome end-to-end fusions predominantly occurring between short telomeres. Mechanistically, cGAS interacts with CDK1 and positions them to chromosome ends. Thus, CDK1 inhibits mitotic non-homologous end joining (NHEJ) by blocking the recruitment of RNF8. cGAS-deficient human primary cells are defective in entering replicative senescence and display chromosome end-to-end fusions, genome instability and prolonged growth arrest. Altogether, cGAS safeguards genome stability by controlling mitotic DSB repair to inhibit mitotic chromosome end-to-end fusions, thus facilitating replicative senescence.


Subject(s)
Cellular Senescence , Chromosomes, Human/metabolism , Genomic Instability , Mitosis , Nucleotidyltransferases/metabolism , Telomere/metabolism , Chromosomes, Human/genetics , HeLa Cells , Humans , Nucleotidyltransferases/genetics , Telomere/genetics
20.
Micromachines (Basel) ; 12(10)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34683318

ABSTRACT

Triboelectric nanogenerators (TENG) can convert mechanical energy into electricity and exhibit unique advantages in the field of low-frequency and discrete energy harvesting. However, the interfacial state and stability between the triboelectric layer and electrode layer influence the output and applications of TENG. Herein, an in situ sputtering Ag process for fabricating induction electrodes is proposed to match with TENG. The sputtering Ag process is optimized by a variety of parameters, such as sputtering power, single-cycle time, number of cycles, cycle interval, and vacuum degree. In addition, the chemical state of Ag as a function of air placement is investigated, showing the sputtered Ag has excellent conductivity and stability. Moreover, four kinds of polymers are selected for fabricating TENGs based on the sputtered Ag induction electrodes, i.e., nylon 66, polyimide (PI), fluorinated ethylene propylene (FEP), and polydimethylsiloxane (PDMS), which shows great applicability. Considering the demand of flexible power suppliers, the sputtered Ag is integrated with a PDMS substrate, and shows good adhesion, flexibility, and ductility after severe deformation of the PDMS. Finally, the developed induction electrode processing technology is used in flexible TENG and shows great prospects in self-powered electronics for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...